On generalizations of classical primary submodules over commutative rings
نویسندگان
چکیده
منابع مشابه
On 2-absorbing Primary Submodules of Modules over Commutative Rings
All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...
متن کاملSome remarks on generalizations of classical prime submodules
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...
متن کاملGeneralizations of Primary Ideals in Commutative Rings
Let R be a commutative ring with identity. Let φ : I(R) → I(R) ∪ {∅} be a function where I(R) denotes the set of all ideals of R. A proper ideal Q of R is called φ-primary if whenever a, b ∈ R, ab ∈ Q−φ(Q) implies that either a ∈ Q or b ∈ √ Q. So if we take φ∅(Q) = ∅ (resp., φ0(Q) = 0), a φ-primary ideal is primary (resp., weakly primary). In this paper we study the properties of several genera...
متن کاملClassical quasi-primary submodules
In this paper we introduce the notion of classical quasi-primary submodules that generalizes the concept of classical primary submodules. Then, we investigate decomposition and minimal decomposition into classical quasi-primary submodules. In particular, existence and uniqueness of classical quasi-primary decompositions in finitely generated modules over Noetherian rings are proved. More...
متن کاملUniformly classical quasi-primary submodules
In this paper we introduce the notions of uniformly quasi-primary ideals and uniformly classical quasi-primary submodules that generalize the concepts of uniformly primary ideals and uniformly classical primary submodules; respectively. Several characterizations of classical quasi-primary and uniformly classical quasi-primary submodules are given. Then we investigate for a ring $R$, when any fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cogent Mathematics & Statistics
سال: 2018
ISSN: 2574-2558
DOI: 10.1080/25742558.2018.1458556